Uno de los privilegios que tenemos aquellos que gustamos de la navegación nocturna consiste en la contemplación del cielo. Si nos encontramos además a gran distancia de la costa y en una noche sin luna, el espectáculo estelar es sencillamente sobrecogedor. Estrellas que antes podíamos identificar con un simple golpe de vista, parecen ahora haber desaparecido confundidas entre los millones de astros que resplandecen en la bóveda celeste, y que parecían no estar allí anteriormente.

Daremos en este número una práctica guía que permitirá al lector conocer el cielo del hemisferio sur e identificar incluso algunas de las estrellas de mayor magnitud. Si navega de noche, compártalo con amigos. Verá que resulta divertido.

CONOCIENDO EL CIELO

“Decidnos cómo se va al cielo y dejad que os digamos cómo éste se mueve”

La frase, que se le atribuye al célebre Galileo Galilei, intentaba establecer diferencias entre el pensamiento científico y el de la Iglesia, que por entonces seguía sosteniendo que la Tierra era el centro del Universo y que los astros se movían en torno a ella. Lamentablemente la osadía le valió nueve años de “arresto domiciliario”. Pero ¿cómo se mueve el cielo realmente?

Sabemos que los astros que vemos hacen su aparición por el sector Este y se ocultan por el Oeste. Esto es debido a que la Tierra gira en sentido directo (de Oeste a Este).

La línea del horizonte define claramente cuáles son aquellos astros que podemos ver y cuáles nos son invisibles. Ahora bien, muchos de los astros que permanecen ocultos resultarán visibles en otras épocas del año, pero otros serán permanentemente invisibles para nosotros. Esto depende exclusivamente de la latitud del observador.

A un observador ubicado en el Polo Norte, sólo le será factible observar los astros que pertenecen al Hemisferio Norte. Nótese en la figura 1 que en este caso el Ecuador celeste y el horizonte del observador son coincidentes, y la línea zenit – nadir coincide con el eje del mundo. Para este observador, todo el cielo se moverá en círculos en torno a su zenit (allí donde se encuentra la estrella polar) y ningún astro se asomará u ocultará en el horizonte. Para él todas las estrellas serán “circumpolares” (astros que giran en torno al polo celeste sin ocultarse jamás). Lo mismo ocurrirá para alguien en el polo Sur.

Si en cambio nos trasladáramos a algún punto sobre el Ecuador, no habría ninguna estrella que no pudiésemos apreciar a lo largo del año (Fig. 2). Aquí el plano del Ecuador celeste es “perpendicular” al plano del horizonte, y los polos geográficos coinciden con los puntos cardinales Norte y Sur. En este caso no habrá astros circumpolares y la totalidad de las estrellas nacerán por el sector Este y se pondrán por el Oeste, en círculos menores paralelos al Ecuador celeste. Aquí puede apreciarse, claramente, que las estrellas que aparecen por el Sudeste se pondrán por el Sudoeste. También puede observarse que aquellas que aparezcan por el Noreste se ocultarán en el Noroeste. Solo aquellas estrellas con declinación = 0º (las que se desplazan sobre el Ecuador celeste) asomarán exactamente por el Este, poniéndose luego por el Oeste.

En latitudes intermedias como la nuestra, la esfera celeste aparecerá “inclinada” y el Polo Sur celeste se verá en el cielo a media altura (Fig. 3). El ángulo de dicha inclinación será igual al valor de la latitud del observador. Es decir que si nos encontramos en latitud 34º S, el Ecuador celeste aparecerá inclinado 34º respecto de nuestro zenit, mientras que el Polo Sur celeste asomará por el Sur a 34º del horizonte.

Por consiguiente algunos de los astros que aparecen en el cielo llevarán su recorrido Este – Oeste, mientras que aquellos que se encuentran próximos al polo celeste girarán en torno a éste sin llegar a ocultarse jamás.

En otras palabras, el cielo para nosotros se moverá con un recorrido inclinado tal como se observa en la figura anterior. ¿Cuánto?: 34º

LAS ESTRELLAS

Podemos definir a una estrella como una enorme masa de gas que se encuentra en estado incandescente, producto de las colosales reacciones nucleares que se gestan en su interior. La enorme masa de una estrella genera un campo gravitatorio de tal magnitud que impide a los gases alejarse y que tiende a colapsarla hacia su centro. Por su parte, la presión de los gases incandescentes trata de expandirse. Para que una estrella permanezca estable, ambas fuerzas (presión y gravitación) deben ser iguales.

La gran cocina nuclear que es una estrella, donde se queman Hidrógeno, Helio, Carbono y otros elementos químicos, genera enormes radiaciones de diferentes tipos. Para el objeto de esta nota, solo interesa una de ellas: la energía luminosa.

Una característica importante de las estrellas es la que denominamos “Magnitud”, que no es otra cosa que el brillo con el que éstas se perciben desde nuestro planeta.

Para ser exactos, la brillantez con que vemos una estrella no siempre refleja su brillo real, ya que es muy posible que una determinada estrella nos resulte mucho más brillante que otra por el simple hecho de encontrarse más próxima a la Tierra. Por ende puede resultar que aquella estrella que se presenta ante nuestros ojos como la más brillante, sea en verdad la más débil. En los catálogos de estrellas aparecen tabuladas las “magnitudes verdaderas” de las estrellas reflejando los valores de brillo real de las mismas, y las “magnitudes aparentes” que establecen el brillo que nosotros percibimos de ellas. En realidad, para nuestro estudio, solo resultan de interés estas últimas.

Las magnitudes estelares vienen dadas por un valor numérico un tanto confuso, estableciendo los valores más “negativos” para las estrellas de mayor brillo y los valores más “positivos” para las estrellas menos visibles.

Esto se debe a la intención de respetar el primer catálogo de estrellas ideado por el astrónomo Hiparco de Nicea, quien las clasificó en seis magnitudes, siendo las de mayor brillo las de 1º magnitud y las más tenues las de 6º magnitud. Posteriormente fue necesario clasificar estrellas de mayor brillo que las de 1º magnitud, por lo que debieron utilizarse valores negativos.

Algunos ejemplos de estrellas y sus magnitudes:

Achernar: 0,6

Acrux (la más brillante de la Cruz del Sur): 1,1

Altair: 0,9

Canopus: – 0,9

Deneb: 1,3

Formalhaut: 1,3

Polaris (la estrella polar): 2,1

Procyón: 0,5

Sirius (la más brillante de todas): – 1,6

VIAJAR EN EL TIEMPO

Uno de los datos más impactantes vinculados con la temática de las estrellas es la increíble distancia que guardan respecto de nuestro planeta. Para brindar una idea aproximada, la estrella Alfa de la constelación del Centauro es la más próxima a la Tierra con una distancia superior a los 4 años luz (algo más de 40 billones de kilómetros). Para decirlo de un modo simple: para llegar a Alfa Centauri tardaríamos más de cuatro años viajando a la velocidad de la luz. Si comparamos esta distancia con la del planeta más lejano (Plutón dista de la Tierra unos 5.750.000.000 km.), llegamos a la conclusión de que Alfa Centauri se encuentra aproximadamente 7.000 veces más lejos que Plutón.

Si miramos a Alfa Centauri, y debido a que su luz tarda cuatro años en alcanzarnos, la estaremos viendo tal y como era hace cuatro años. Por esa razón se dice que cada vez que se mira a una estrella se está viendo directamente hacia el pasado.

De observar en cambio el Cinturón de Orión, estaríamos echando un vistazo hacia la Edad Media.

Si nos detuviésemos a apreciar la galaxia de Andrómeda, veríamos nada menos que la luz que ésta emitía cuando el hombre primitivo daba sus primeros pasos, hace aproximadamente 2,5 millones de años.

Es así como los científicos estudian en la actualidad la creación del cosmos. En algún lugar, muy lejos de nuestro diminuto planeta, esperan encontrar la luz que emitía el universo primigenio, apenas algunos segundos después del Big-Bang.

MANOS A LA OBRA

Ya sabemos cómo se mueven las estrellas y hasta nos atrevemos a catalogarlas por su magnitud. Intentaremos dar una recorrida a las constelaciones más importantes visibles desde nuestra latitud.

Tengamos en cuenta que, como mencionamos anteriormente, las estrellas, constelaciones y galaxias varían su posición relativa respecto de la Tierra y el Sol, razón por la cual no son visibles durante todo el año.

Una manera sencilla de comenzar es tratando de identificar a la Cruz del Sur (Fig. 4). Para ello, ubiquemos al Polo Sur Celeste en forma imaginaria, dirigiendo nuestra vista en dirección al Sur y elevándola a 34º del horizonte. Allí debería encontrarse el Polo Sur celeste. Hagamos una recorrida circular alrededor de éste y sin duda encontraremos a la Cruz del Sur, ya que al ser una constelación circumpolar se encuentra siempre por sobre el horizonte girando en torno a dicho Polo celeste.

En realidad, y al igual que ocurre con la Osa mayor en el Norte, la Cruz del Sur se utiliza para conocer la ubicación del Polo Sur celeste y no a la inversa, pero por ser esta la primera vez, haremos la vista gorda.

La Cruz del Sur está compuesta por cuatro estrellas: Alfa o Acrux (la más brillante) es la más cercana al Polo Sur. Opuesta a ésta y formando el brazo mayor de la cruz se encuentra Gamma o Gacrux (la tercera en magnitud). Formando el brazo menor de la cruz se encuentran Beta (la segunda en brillo) y Delta (la cuarta). Aparece una quinta y última estrella casi imperceptible, muy cerca de Delta, llamada Epsilon.

Una manera de obtener la posición del Polo Sur celeste a partir de la Cruz del Sur es trasladando la longitud del brazo mayor 4,5 veces en la dirección de Acrux.

Otra manera sencilla consiste en obtener el punto medio de la línea imaginaria que une a Acrux con Achernar (alfa Eridani), la estrella más brillante de la constelación de Eridanus (en la mitología griega: el río del final del mundo). Esta constelación del hemisferio Sur es extremadamente larga y termina en Achernar (en árabe: final del río).

Achernar es fácilmente identificable por su gran brillo y basta con seguir en línea recta el brazo mayor de la cruz aproximadamente unas nueve veces. Exactamente entre ambas, ubicaremos al Polo Sur celeste.

Para identificar rápidamente a la Cruz del Sur se puede recurrir a las estrellas Alfa y Beta de la constelación del Centauro (Alfa Centauri y Beta Centauri), conocidas como “el puntero de la Cruz del Sur”, ya que apuntan directamente hacia esta última.

La constelación del Centauro representa a una figura mitad hombre y mitad caballo, en la que Alfa y Beta serían sus patas delanteras (Fig. 5). Es una de las de mayor tamaño del cielo austral con casi 45º de extensión (la mitad de la distancia entre horizonte y zenit). Como ya dijimos, Alfa Centauro es la más próxima a la Tierra y cuenta con una particularidad muy interesante: Si bien a simple vista se aprecia como una estrella de gran magnitud (es la tercera más brillante del cielo), es en realidad un sistema múltiple compuesto de tres estrellas. Dos de ellas (A y B) conforman un sistema binario que giran una en torno de la otra completando una vuelta cada 80 años. La tercera (Próxima Centauri) es sumamente débil y se mueve en el espacio a 2º de distancia del sistema binario y casi en forma paralela a éste.

Una perpendicular a la línea que une a Alfa y Beta del Centauro también apuntaría al Polo Sur celeste.

Lamentablemente, los navegantes del Hemisferio Sur no contamos con la suerte de los que habitan el Hemisferio Norte. No tenemos estrella Polar. Bueno, si le sirve de consuelo esto no es tan así. A 1º de distancia del Polo Sur celeste y girando en torno a éste en un círculo de 1º de radio, se encuentra Sigma Octantis, de la constelación de Octans (el octante), pero por desgracia es apenas perceptible (magnitud =  5,45).

Una última estrella por hoy: Canopus (Alfa Carinae), la estrella más brillante en la constelación de Carina (la quilla del navío Argo) y una de las más brillantes del cielo. Canopus tiene una magnitud de -0,9 y es fácilmente identificable ya que conforma, junto con Acrux y Achernar, un triángulo rectángulo del cual Canopus es el vértice del ángulo recto.

Suficiente por ahora. En la próxima entrega continuaremos con nuestra recorrida por el cielo austral. Mientras tanto les dejo una frase del escritor francés Gustave Flaubert:

“Creo que si miráramos siempre al cielo, acabaríamos por tener alas”.

Hasta la próxima.

 

Darío G. Fernández | Director del ISNDF

La determinación de la latitud por medio la estrella polar se basa en un principio muy simple. Como puede apreciarse en la figura 2, el Polo Norte celeste (proyección del Polo Norte terrestre en la esfera celeste) se encuentra elevado por sobre el horizonte un valor angular idéntico al de la latitud de quien lo observa. Para explicarlo de un modo más sencillo, un observador situado sobre el Polo Norte verá al Polo Norte celeste casi exactamente sobre su zenit, o sea con una altura de 90º (latitud = 90º). En cambio, un observador parado sobre el Ecuador lo verá sobre la línea del horizonte, es decir con altura 0º (latitud = 0º). En latitudes Norte intermedias, la altura con la que se verá al Polo Norte celeste, será también el valor de su latitud.

Figura 2

Por esa sencilla razón, si se pudiese medir con un sextante la altura del Polo Norte celeste, estaríamos obteniendo directamente y sin más complicaciones la latitud del lugar. Esto es posible en el hemisferio Norte gracias a que la estrella Polaris (a Osa Menor), la estrella más brillante de dicha constelación, se encuentra casi exactamente sobre el polo Norte  celeste ya que su declinación es casi de 90º.

Obteniendo su altura verdadera por medio del instrumento y efectuando unas sencillas correcciones, se obtiene de forma directa la latitud del observador.

j = h

El único inconveniente a salvar se debe a que la estrella polar, como dijimos anteriormente, no se encuentra exactamente sobre el Polo Norte celeste sino que mantiene con éste una diferencia de casi 1º (declinación polaris = + 89º 18’).

Para salvar estas diferencias, el Almanaque Náutico trae incorporada una tabla llamada “Latitud por Altura de la Polar”, de muy fácil aplicación.

ALTURA MERIDIANA DEL SOL

La altura meridiana de cualquier cuerpo celeste es la máxima altura que dicho cuerpo puede alcanzar por sobre el horizonte y se produce precisamente en el instante en que atraviesa el meridiano del observador. Todos sabemos que el Sol asoma por el Este y va ganando altura hasta que alcanza su máximo, en horas cercanas al mediodía, momento a partir del cual su altura comienza a decrecer hasta el ocaso. Pues bien, al momento de su máxima altura, también llamado “culminación”, el Sol se encuentra exactamente en la línea Norte-Sur del navegante, es decir, en su meridiano. Esta particularidad hace que sea muy sencillo calcular el valor de la latitud, simplemente obteniendo la altura máxima del astro durante su culminación, de manera independiente de la hora en que ésta se produzca.

Figura 3

En el esquema de la figura 3 se ha graficado a un observador y a un astro durante su culminación, ambos en el hemisferio Norte, en el que pueden apreciarse los siguientes elementos:

  • Como puede comprobarse, éste es un plano que se encuentra a 90º de la vertical del observador, tal como ocurre en la realidad.
  • La altura del astro (h). Esta es en definitiva la altura que el navegante puede medir con su sextante y no es otra cosa que el ángulo que verá el navegante entre el astro y el horizonte.
  • La declinación del astro (d). Para aquellos que no están demasiado familiarizados con la astronavegación, la declinación de un astro es el equivalente a la latitud, pero en la esfera celeste. Puede comprobarse en el esquema que la declinación es el arco de meridiano comprendido entre el Ecuador y el astro.
  • La latitud del observador (j). Es lo que se desea averiguar.
  • La distancia zenital (Dz). Para explicarlo de un modo sencillo, podríamos decir que es la distancia angular que existe entre el zenit del observador y el astro en cuestión. Como puede comprobarse, entre el zenit del observador y el horizonte hay 90º, por lo tanto la distancia zenital y la altura son ángulos complementarios (Dz + h = 90º). Debido a la dificultad de medir la distancia zenital de manera directa, ya que se hace imposible identificar al zenit en el cielo, para obtener su valor se procede midiendo su altura por sobre el horizonte y se resta el valor obtenido a 90º (Dz = 90º – h).

Del gráfico se desprende claramente que el valor de la latitud del observador, en este caso en particular resulta de restar, en valor absoluto (sin el signo), la declinación (d) del astro para ese instante, y la distancia zenital (Dz) al mismo.

j = d – Dz

Dependiendo de las posiciones relativas que tenga tanto el observador como el astro, la fórmula variará, pero en todos los casos la latitud resulta de sumar o restar la declinación del astro y la distancia zenital.

El cálculo de la latitud utilizando la altura meridiana del Sol era, junto con la altura de la estrella polar, la única herramienta más o menos precisa de que disponía el navegante por aquellos tiempos. De hecho, la obtención de la latitud era de vital importancia ya que se hacía imprescindible para obtener la longitud. El método más frecuentemente utilizado, ya en la era del cronómetro, para obtener la longitud era el método conocido como el de las “alturas cronometradas”, antes mencionado. El mismo consistía en obtener la altura del Sol en un momento en el que este se encontrara muy próximo al Este o al Oeste (azimut 90º ó 270º) y se tomaba nota de la hora de la observación. Hecho esto, el navegante calculaba su nueva latitud a partir de la latitud obtenida en la meridiana, utilizando para ello los cálculos de estima habituales. A partir de este punto ya podía calcular, aplicando la trigonometría, el ángulo horario local del astro (AHL) utilizando la fórmula:

cos AHL = (sen h – sen j . sen d) / cos j . cos d

Una vez obtenido el AHL, era muy sencillo determinar la longitud (w) teniendo como dato el AHG (longitud) del Sol:

w = AHG +/- AHL

Este procedimiento era el más utilizado por los navegantes de la época previa al descubrimiento de la recta de altura, y fue el que utilizó el Capitán Thomas Hubbard Sumner cuando, accidentalmente, dio con la primera línea de posición astronómica.

Tal era la importancia del cálculo de la latitud por altura meridiana del Sol, que existían varios métodos a partir de los cuales se podía obtener la altura meridiana, si por alguna razón (generalmente nubes) no se hubiese podido obtener la altura del Sol al momento de su culminación. Algunos de los más usuales son:

  • Latitud por altura circunmeridiana (hcm): Se define como altura circunmeridiana a la altura de un astro que se encuentra próximo a su culminación, tanto sea antes como después. El procedimiento consiste en determinar la corrección que debe aplicarse a la altura circunmeridiana obtenida, para convertirla en altura meridiana (hm). Para obtener dicha corrección es necesario previamente calcular el tiempo que media entre la altura circunmeridiana obtenida y la hora en que debería producirse el pasaje meridiano (t). Una vez calculado dicho tiempo, la corrección surge de un sencillo cálculo matemático utilizando para ello la fórmula:

hm = hcm + a.t2

 Donde:

“hm” es la altura meridiana que se desea averiguar.

“hcm” es la altura circunmeridiana obtenida un tiempo anterior o posterior a la culminación.

“a” es un coeficiente que representa la variación en altura que presentará el astro en el minuto que sigue o que precede al paso meridiano.

“t” es el tiempo transcurrido entre la hora en que se tomó la altura circunmeridiana y la hora en que se supone se produciría el pasaje meridiano.

Sin entrar en análisis demasiado complejos, queda claro que la fórmula expresa lo siguiente: conociendo lo que varía el astro en altura en el minuto próximo a la meridiana (“a”), y conociendo también el intervalo de tiempo entre dicha meridiana y el instante en que se tomó la circunmeridiana (“t”), es sencillo calcular cuál será su variación total. Por supuesto que dicha variación no es lineal sino que es exponencial y está dada por el factor a.t2.

Algunos años más tarde, dicho cálculo ya fue incluido en tablas que facilitaban enormemente el trabajo del navegante. Cabe aclarar que para que el procedimiento gozase de cierta precisión, es menester que el tiempo (t) antes mencionado no excediera ciertos límites, también estipulados en las tablas de cálculo.

  • Latitud por altura extrameridiana: En el caso de que no se hubiese podido obtener una altura meridiana o una circunmeridiana dentro de los límites establecidos a tal efecto, es posible reducir a meridiana una altura tomada fuera de los límites mencionados, aplicándole a dicha altura una corrección adicional. De cualquier modo, la latitud obtenida por altura extrameridiana no ofrece garantías de precisión.
  • Latitud por dos alturas circunmeridianas y el intervalo: Este procedimiento, muy poco utilizado, se basaba en obtener dos alturas circunmeridianas, una anterior y la otra posterior al pasaje meridiano, y promediar sus correcciones en función de sus respectivos tiempos.

Todos estos procedimientos complejos y poco precisos destinados a obtener la latitud, quedaron obsoletos y cayeron completamente en desuso cuando vio la luz la primera línea de posición astronómica, también llamada recta de altura. A partir de tal descubrimiento ya no era necesario calcular la latitud y la longitud de manera separada y el arte de navegar consistía en trazar rectas de altura e intersectarlas hasta lograr un FIX. A tal efecto, tanto la altura circunmeridiana como la extrameridiana resultaban mucho más útiles empleándolas en el cálculo de una recta de altura convencional que reduciéndolas a meridianas, lográndose así una mayor precisión en el resultado final.

De cualquier manera, el procedimiento para obtener la latitud por altura meridiana sigue siendo interesante por su simplicidad y rapidez de cálculo.

 

De las dos coordenadas terrestres utilizadas desde tiempos muy antiguos, la que mayores dificultades ha causado siempre a los navegantes fue sin duda la Longitud. La tarea de encontrar un método preciso para su determinación, en la época de las grandes navegaciones, ocupaba las mentes de geógrafos y navegantes por igual y se había convertido en cuestión de estado para casi todos los soberanos de la época, quienes destinaban en el cometido grandes sumas de dinero. Aun así, el problema de la longitud no pudo resolverse con exactitud hasta el siglo XVIII, cuando John Harrison puso en funcionamiento su nueva invención: el cronómetro marino. En contraposición a esto, el modo de hallar la Latitud ya era bien conocido desde mucho tiempo antes y su determinación no ofrecía secretos a los navegantes desde épocas muy remotas.

 UN POCO DE HISTORIA

Se cree que los primeros navegantes que lograron determinar la latitud fueron los fenicios, utilizando para ello la estrella polar. Los fenicios sabían claramente que la coordenada latitud era igual a la altura que tenía el polo celeste sobre el horizonte, tema que trataremos más adelante. Dicho polo celeste, estaba perfectamente señalizado en el cielo por la estrella polar, que por aquel entonces no era la estrella a de la constelación de la Osa Menor (por todos conocida como “Polaris”) sino que era b (Kochab), la segunda en brillo (fig. 1). Esto se debe a que, por el movimiento de precesión terrestre, las estrellas van variando su posición a lo largo de los años. Por suerte, dicho movimiento es extremadamente lento, a punto tal que el lugar de la estrella polar será ocupado por la estrella Vega, que pertenece a la constelación de Lira, en aproximadamente 12.000 años.

En definitiva, si la latitud equivale a la altura del polo celeste elevado por sobre el horizonte, y en dicho polo se encuentra Polaris, pues bastaba entonces con medir la altura de dicha estrella y se obtenía así la latitud.

Así fue como comenzaron a idearse los primeros instrumentos de medición, entre los que podemos mencionar el Astrolabio, el Cuadrante y la Balestilla, todos ellos empleados tanto por portugueses como por españoles en la época de la conquista de América.

Por supuesto que el método todavía no arrojaba resultados exactos ya que, como hoy sabemos, la estrella polar no se encuentra exactamente sobre el polo celeste sino que guarda cierta separación (aproximadamente 1º dependiendo de la época del año). Además no se conocían todavía a ciencia cierta las correcciones que debían aplicarse a la altura medida, producto de la refracción astronómica, la depresión aparente del horizonte, etc.

Para efectuar dichas correcciones existían diversos métodos, pero ninguno de ellos era demasiado preciso. Aun así, la latitud calculada por este método era perfectamente aceptable a los fines que se pretendía.

El problema comenzó a aparecer en la época de los grandes descubrimientos a partir de que fue necesario navegar en latitudes Sur, donde la estrella polar se encuentra permanentemente por debajo del horizonte.

Los primeros que se aventuraron a América utilizaron a la estrella Acrux (la más brillante de la Cruz del Sur), a la cual aplicaban una corrección de aproximadamente 30º, a fin de obtener la latitud.

Otra forma de calcular la latitud, utilizada desde épocas muy remotas, era a partir de la altura meridiana del Sol, método que explicaremos en nuestra siguiente entrega. El problema fundamental de la aplicación del método se debía fundamentalmente al desconocimiento de la declinación que el Sol tenía ese día. Como veremos después, la coordenada declinación en la esfera celeste es equivalente a la coordenada latitud en la esfera terrestre.

Al comienzo, la utilización del método estaba exclusivamente restringida a los días en que el Sol tenía declinación cero, es decir, cuando se encontraba exactamente sobre el Ecuador. Como se sabe, esto último ocurre solo en los equinoccios (21 de marzo y 21 de septiembre aproximadamente). Luego fue aplicado también durante los solsticios (21 de junio y 21 de diciembre), días en los cuales el Sol alcanza su máxima declinación (23º 27’). Más adelante en el tiempo fueron apareciendo las primeras publicaciones conteniendo las tablas de las declinaciones del Sol para todo el año, las que tuvieron su origen en los Libros de Alfonso X (el Sabio). Éstas dieron inicio a los primeros Almanaques Náuticos que se conocen: el publicado en 1475 por Abraham Zacuto, profesor de astronomía en la universidad de Salamanca, quien además de la declinación publicó el ángulo horario del Sol (equivalente a la longitud terrestre) para los años 1473 a 1476; las Efemérides de Johannes Müller, entre el 1468 y 1470 y el Manual de Munich, aproximadamente en el 1509, el que contenía además una detallada explicación de la determinación de la latitud utilizando la altura meridiana del Sol y la estrella polar.

Un tiempo después, Martín Cortés expuso los cuatro métodos principales para determinar la latitud utilizando la altura meridiana del Sol, en una publicación que llevó el título “Breve compendio de la esfera y del arte de navegar”. Pedro Nunes, gran matemático portugués, emprendió con un método para obtener la altura meridiana a partir de la altura extrameridiana, tema que veremos más adelante.

Avanzado el siglo XVII y a partir de los avances de las publicaciones con efemérides astronómicas, aparecieron nuevos métodos para determinar la latitud: altura meridiana de una estrella cualquiera, alturas simultáneas de dos estrellas, amplitud del Sol y su intervalo, dos alturas del Sol y la distancia entre verticales, etc.

Más adelante se descubre el método llamado de las “Alturas recíprocas” y el de las “alturas cronometradas” (también llamado “longitud por cronómetro”), ambos destinados a la determinación de la longitud. De aquí en más, son innumerables los aportes que hacen al cálculo matemático personajes como Mendoza, Pagel, Ivory y Gauss.

Hasta ese entonces, el modo de hallar la posición en el mar requería aplicar diferentes métodos para determinar la latitud y la longitud en forma separada. A partir del descubrimiento de la recta de altura hecho por Sumner, Johnson y Saint Hilaire entre otros, dichos métodos comenzarían a entrar paulatinamente en desuso.

 

Hasta la próxima